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Flow along streamwise corners revisited
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In this paper we investigate the three-dimensional laminar incompressible steady flow
along a corner formed by joining two similar quarter-infinite unswept wedges along
a side-edge. We show that a four-region construction of the potential flow arises
naturally for this flow problem, the formulation being generally valid for a corner of
an arbitrary angle (π− 2α), including the limiting cases of semi- and quarter-infinite
flat-plate configurations. This construction leads to five distinct three-dimensional
boundary-layer regions, whereby both the spanwise length and velocity scales of the
blending intermediate layers are O(δ), with Re−1/2 � δ � 1, Re being a reference
Reynolds number supposed to be large. This reveals crucial differences between
concave and convex corner flows. For the latter flow regime, the corner-layer motion
is shown to be mainly controlled by the secondary flow which effectively reduces to
that past sharp wedges with solutions being unique and existing only for favourable
streamwise pressure gradients. In this regime, the corner-layer thickness is shown
to be O(Re−0.5+α/π/δ2α/π), − 1

2
π 6 α 6 0, which is much smaller than O(Re−1/2) for

concave corner flows.
Crucially, our numerical results show conclusively that, for α 6= 0, closed streamwise

symmetrically disposed vortices are generated inside the intermediate layers, confirm-
ing thus the prediction made by Moore (1956) for a rectangular corner, which has so
far remained unconfirmed in the literature.

For almost planar corners, three-dimensional corner boundary-layer features are
shown, as in (Smith 1975), to arise when α ∼ O(1/ lnRe). On the other hand, we
show that the flow past a quarter-infinite flat plate would be attained when both
values of the streamwise pressure gradient and external corner angle (π+ 2α) become
O(1/ lnRe) or smaller.

Numerical results for all these flow regimes are presented and discussed.

1. Introduction
Flow along streamwise (concave and convex) corners provides a realistic model

to many engineering applications such as wing–body junctions, wind tunnel corners,
box-like inlet configurations or sharp edges. Related previous works have, in general,
been mainly focused on the zero pressure gradient laminar boundary-layer motion
along concave corners formed by two intersecting semi-infinite planes with coplanar
leading edges. This problem was first considered by Loitsianskii (1936), and then
by Loitsianskii & Bolshakov 1936, who employed approximate integral methods.
However, the first real attempt to satisfy boundary-layer equations was undertaken
by Carrier (1947) who used only the streamwise momentum equation, and satisfied the
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continuity equation through an assumption relating the three velocity components.
This shortcoming was then overcome by Pearson (1957) by using the full three-
dimensional boundary-layer equations, and deriving correct corner-layer boundary
conditions in exploiting the asymptotic form of the vorticity equation. Yet, it was
Rubin (1966) who produced the first fully rigorous analysis by employing the matched
asymptotic expansions method to derive the far-field boundary conditions for the
corner layer, followed by demonstrating the algebraic decay nature of the similarity
equations (Pal & Rubin 1971), before eventually focusing on their numerical solution
(Rubin & Grossman 1971). Other numerical solutions were also computed by Desai
& Mangler (1974), Ghia (1975), Barclay & Ridha (1980), and by Wilkinson & Zamir
(1984) amongst others. Desai & Mangler (1974) made the reasonable assumption
that at large distances from the corner the boundary layer becomes precisely two-
dimensional, but their application was unfortunately made in the boundary-layer
sense, and by consequence defeated its purpose. Using their formulation, Ridha
(1978) highlighted this shortcoming and gave a derivation for the correct far-field
boundary conditions. This probably explains why their result is found to diverge
considerably from those of other authors, particularly with regard to the secondary
flow.

For the non-zero pressure gradient corner flow counterpart, it appears that the first
rigorous work is due to Smith (1975) who examined the three-dimensional stagnation
point flow into a corner of angle (π − 2α). He demonstrated that three-dimensional
corner viscous flow features are produced when α ∼ O(1/ lnRe), Re being a reference
Reynolds number supposed to be large. Much later, Ridha (1990) considered a corner
flow with external streamwise velocity component proportional to zm (z being the
streamwise distance measured from the leading edge and m an arbitrary constant),
derived similarity solutions for the right-angle corner configuration, and presented nu-
merical solutions valid at the corner-layer side-edge; these were found to be different
from the classical Falkner–Skan family of solutions (Rosenhead 1966), non-unique,
existing only for β > −0.03678, and including a three-dimensional solution besides the
Blasius one (when m = 0), β = 2m/(1 +m) being the Falkner–Skan parameter. Moti-
vated by the (subsequent) question of the match between the Falkner–Skan solution
and that prevailing at the corner-layer side-edge, Ridha (1995) investigated the cor-
responding potential flow problem, and demonstrated that a four-region construction
was required for its analysis.

Dhanak & Duck (1997) have investigated the effects of free-stream pressure gradient
on symmetrical as well as asymmetrical boundary layers in rectangular corners, and
on their flow stability. They found that non-uniqueness was a common feature of
the corner-layer similarity solutions; conditions at the corner-layer side-edge turned
out to be essentially the same as those of Ridha (1990, 1992) for symmetrical corner
flows.

On the experimental side, the works of El-Gamal (1977) and Zamir (1981) for the
rectangular corner and Barclay (1973) for the 135◦ corner situations provide results
against which a meaningful comparison with theoretical predictions can be made.
This appears to be vindicated by the close resemblance between them and the lower
solution branch results of Dhanak & Duck (1997) for the rectangular corner case.

Our objective in the present work is to consider the general combined potential and
viscous flow problems along corners of arbitrary included angle (2π > π − 2α > 0)
for non-zero streamwise pressure gradient, including the semi- and quarter-infinite
flat-plate limits, and to address the question of transition from the Falkner–Skan
solution, arising sufficiently far away from the corner, to that prevailing at the
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corner-layer side-edge. We therefore begin by analysing the potential flow in § 2
where four-region treatment is shown to be required (see figure 1), revealing thus
its singular perturbation type character. The boundary layer is then analysed in § 3,
where a five-region treatment turns out to be necessary. The corner layer is found now
separated from the far-field boundary layers by an intermediate viscous layer on each
of its sides (see figure 3), all layers being three-dimensional in nature. Specifically,
both spanwise length and crossflow velocity scales in the intermediate layers are
O(δ), with 1 � δ � Re−1/2. The far-field boundary layers are considered in § 4, and
found to belong to a class of viscous flows developing on swept flat surfaces. In
§ 5, we turn to investigate boundary layers corresponding to almost planar corners
for which similarity-type solutions are derived and found to be non-unique in the
parameter space; flow properties reported by Smith (1975) for three-dimensional
stagnation point flow into almost planar convex and concave corners are confirmed
and generalized to an arbitrary streamwise pressure gradient. Important differences
between concave and convex corner flow regimes are then revealed in §§ 6 and 7,
respectively, with associated computational difficulties analysed and numerical results
presented for both cases. In particular, the corner-layer motion for the latter regime
turns out to be mainly controlled by the crossflow. Finally, the special case of viscous
flow past a quarter-infinite flat plate is treated in § 8 and compared to the work of
Stewartson (1961) with length scales and flow properties being further clarified and
elucidated. The most interesting result in the present work appears to be the formation
of symmetrically disposed vortices proceeding from the forward corner (depicted in
figures 5b, 14b, 17b and suggested by 20) and developing in the intermediate viscous
layer. This result was predicted by Moore (1956) by conjectural considerations, but
has remained unconfirmed in the literature so far. Our conclusions are given in § 9.

After the first submission of this paper a number of directly/indirectly related
works (to corner flows) have appeared in the literature. Most notably Duck, Stow &
Dhanak (1999, 2000) have studied non-similarity solutions to the corner boundary-
layer equations, and the related boundary-layer flow along a ridge. We note too the
very recent work of Duck & Dry (2001) on (unsteady) three-dimensional disturbances
to boundary-layer flows, which is also related in some respects to corner flows. Ques-
tions of relevances between their works and ours will briefly be considered/discussed
where appropriate.

2. The potential flow
2.1. Posing the problem

The corner is formed by joining two similar quarter-infinite unswept wedges joined
along a side-edge coinciding with Oz (in Cartesian coordinates (x∗, y∗, z∗) and (x, y, z)
with z = z∗), with the origin taken at the corner vertex and one of the corner walls
lying along y = 0; the cross-section thus formed varies then with z as illustrated
in figure 1. The leading edges of both wedges are kept coplanar and so aligned to
an incoming uniform steady stream (of an incompressible fluid) to ensure symmetry
with respect to the corner bisector plane, x∗ = 0. The corner angle is (π − 2α) and
the opening angle of each wedge is αw = βπ where β = 2m/(m+ 1) with m being an
arbitrary constant.

Our immediate objective is to seek a velocity potential Φ(x∗, y∗, z∗) satisfying

∇2Φ = 0, (2.1)

1

r

∂Φ

∂θ
= 0 at θ = 0, θ = π− 2α with z > 0, (2.2)
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Figure 1. Definition sketch of the three-dimensional corner flow configuration showing Cartesian
systems (x∗, y∗, z∗) and (x, y, z), to the latter of which is associated the potential flow velocity vector
(Vx, Vy, Vz).

together with the usual two-dimensional flow solutions corresponding to each wedge

Φ ∼ Czm+1

[
1

1 + m
− m

2

(rθR)2

z2

]
+ · · · as r →∞ with rθR = O(1), (2.3)

Φ ∼ Czm+1

[
1

1 + m
− m

2

(rθL)2

z2

]
+ · · · as r →∞ with rθL = O(1), (2.4)

in which (x, y) = r(cos θ, sin θ), ∇2 denotes the three-dimensional Laplacian operator,
C is a constant, θR = θ � 1, and θL = π− 2α− θ � 1.

We begin by considering solutions due to Smith (1975) for m = 1, and Ridha (1990)
for an arbitrary value of m which suggest that problem (2.1)–(2.2) is satisfied by the
following asymptotic solution

Φ ∼ U1z
m+1

[
1

1 + m
− m

4

( r
z

)2

+ O

(( r
z

)4
)]

, (2.5)

(with (r/z) < 1), but leaves conditions (2.3) and (2.4) unsatisfied, U1 being an arbitrary
constant. We may attempt to resolve this incompatibility by adding correction terms
Φ̃(x∗, y∗, z∗) (satisfying the Laplace equation together with appropriate boundary
conditions) to each of solutions (2.3), (2.4) and (2.5). This suggests that the sought
solution may be constructed in the form of an asymptotic representation for each
region shown in figure 2 while at the same time noting that the solution of region
IV can readily be deduced from that of region II as a consequence of symmetry
with respect to the corner bisector plane x∗ = 0, the intermediate strip III enabling
us to match both regions. Note that this construction is crucially different from the
traditional one-region approach employed by Rubin (1966) for the zero streamwise
pressure gradient case, or the two-region treatment used by Smith (1975) for the
three-dimensional stagnation point flow into a corner.
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Figure 2. A cross-section showing potential flow structure in the vicinity of the corner.

2.2. Flow regions

2.2.1. Region I

Let Φ̃1 be the correction term to be added to solution (2.5) in this region and
satisfying

∇2Φ̃1 = 0,

1

r

∂Φ̃1

∂θ
= 0 at θ = 0, θ = π− 2α,

 (2.6)

for z > 0 with r/z < 1. A close examination of (2.5) suggests that we may formally
write r/z = δ1r1 and seek the solution of system (2.6) with Φ̃1 7→ zqΦ̃1(r1, θ; δ1);
here, r1 is O(1) with δ1 � 1 providing a measure for the size of region I whilst q
is a constant to be determined. Crucially, (2.5) tells us then that the radial velocity
component in this region is also O(δ1).

We find

Φ1 = U1z
1+m

(
1

1 + m
− m

4
δ2

1r
2
1

)
+ δ2

1Az
qrs1 cos (sθ) + O(δ3

1), (2.7)

for the velocity potential in region I, where s = 2π/(π− 2α) and A is a constant to be
determined together with q from the matching requirements with regions II and III.

2.2.2. Region II

In both regions II and IV we are looking for the flow readjustment as region I is
approached therefrom, which is equivalent to seeking the effect of one wedge on the
velocity potential of the other if it were alone. Now since for two-dimensional flow
past a wedge the velocity potential is of the form U2R

k cos(kΘ), boundary conditions
on both wedge walls must be considered; here, U2 and k are arbitrary constants and
(x, R,Θ) is a cylindrical polar coordinate system in which (y, z) = R(sinΘ, cosΘ). To
account for the perturbation effect (represented by Φ̃2, say) of the other wedge, we
formally introduce the small parameter δ2 by setting

x/R = δ2x̃, x̃ = O(1), (2.8)

and so, close to the inner limit of region II, the solution Φ (denoted by Φ2 in this
region) may be sought in the following form

Φ2 = {U2R
k + δ2

2Φ̃2(R, x̃; δ2)} cos(kΘ) for z > 0, (2.9)
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in which the first term suggests Φ̃2 7→ RnΦ̃2(x̃; δ2). This leads to

Φ2 = {U2R
k + δ2

2BR
nx̃} cos(kΘ) + O(δ3

2), (2.10)

where n and B are constants to be determined from the matching requirements.

2.2.3. Region III

This strip is confined to the neighbourhood of the corner bisector plane and is
destined to absorb asymptotically the incompatibility of regions II and IV. The effect
of the corner walls on this region is accounted for through the match with either
of these two regions or with region I and should consequently be symmetric with
respect to the plane x∗ = 0. This suggests that the appropriate coordinate system here
is (x∗, y∗, z∗), as shown in figure 1 and 2, but nonetheless it proves more practical to
express the result in the hybrid cylindrical polar coordinates systems, namely (r, θ, z)
and (x∗, R∗, Θ∗), with (y∗, z∗) = R∗(sinΘ∗, cosΘ∗). Again, we seek flow properties for
small r/z and so we set r/z = r3δ3 � 1, with r3 = O(1), δ3 being a small parameter.
Consistent with the above discussion we find

Φ3 = U3R
∗t cos(tΘ∗) + δ2

3A
∗zar3 sin(α+ θ) + O(δ3

3), (2.11)

in which the constants U3, t, a and A∗ are to be determined from the matching
requirements.

2.3. Matching

Thus far, we have derived a particular asymptotic description for each region, namely
equations (2.7), (2.10) and (2.11). Our immediate aim now is to show that they match
each other in the sense of matched asymptotic expansions as given, for instance, in
Van Dyke (1975). For brevity, we shall proceed to match expansions (2.7) and (2.10)
in some detail, then match (2.7) and (2.11) but with details omitted. Throughout, z is
kept fixed and positive.

We start by considering region II, where it is readily seen that approaching I from
II while keeping θ fixed requires r → 0. This implies having Θ → 0 since tanΘ = y/z
and so

Φ2 ∼ U2R
k + δ2

2BR
nx̃+ O(Θ2) + O(δ3

2), (2.12)

in this limit. Next, approaching II from I while keeping Θ small and fixed (implying
keeping y = r sin θ small and fixed) requires making r sufficiently large (which is
consistent with condition (2.3)) and subsequently we must have θ � 1. This coupled
to the definitions of the coordinate systems leads to having Θ/θ ∼ δ1 in the matching
zone and thus yields

Φ1 ∼ U1z
1+m

[
1

1 + m
− m

4
δ2

1r
2
1

]
+ δ2

1z
qrs1A+ O(θ2δ2

1), (2.13)

for r sufficiently large and θ � 1.
To match Φ1 and Φ2, solution (2.12) is re-expressed first in function of the variables

of region I followed by expanding the different terms in powers of δ1. We find

Φ2 = U2z
k + δ2δ1Bz

nr1 + O(δ2δ1θ
2). (2.14)

Expressions (2.13) and (2.14) suggest that the match requires having k = m + 1,
U2 = U1/(1 + m) and δ1 = δ2 (= δ, say). It is clear now that the match may be
made plausible if the terms z1+mr2

1, zqrs1 and znr1 satisfy an equivalence relationship
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of the form

lim
r1→rm(z)

z1+mr2
1

znr1
∼ lim

r1→rm(z)

znr1

zqrs1
∼ 1, (2.15)

for all (admissible) values of m and s, where rm(z) is to be specified shortly. This
suggests that the match may finally be brought to its own conclusion in an overlapping
zone for which r = ro(z) with ro/z � 1. To this end, we pose

r0 = lδ
(z
l

)b
, ε% = ln

r

r0
, (2.16)

and so rm(z) = (z/l)b−1 in which b is a constant to be determined/fixed, as will be
shown later, and % is O(1) with the small parameter ε serving to provide a measure,
in order of magnitude, for the size of the overlapping zone through

r

r0
∼ 1 + ε%+ 1

2
ε2%2 + · · · , (2.17)

as r → r0; the quantity l appearing in (2.16) represents a length scale introduced
so that r0 is measured in length units and so it is set to unity in what follows.
Accordingly, the equivalence relationship (2.15), together with (2.16), now leads to

(1 + m) + 2(b− 1) = n+ (b− 1) = q + s(b− 1). (2.18)

In the final step of the match we need only ensure matching of the crossflow velocity
components in regions I and II, since the streamwise components have already been
matched through the zeroth-order terms in δ. To this end, ∂Φ/∂x and ∂Φ/∂y are first
computed from (2.7) and (2.10), and their asymptotic forms are then worked out in
the following steps analogous to those leading to (2.13) and (2.14). We find

∂Φ1

∂x
∼ − 1

2
δmU1z

mr1 + δsAzq−1rs−1
1 + O(δθ2), (2.19)

∂Φ1

∂y
∼ − 1

2
mU1yz

m−1 − s(s− 1)Ayzq−2rs−2
1 + O(δθ2), (2.20)

for region I, and

∂Φ2

∂x
∼ δBzn−1 + O(δΘ2), (2.21)

∂Φ2

∂y
∼ −mU1yz

m−1 + O(δΘ2), (2.22)

for region II. Secondly, definitions (2.16) are inserted into (2.19) and (2.20), followed
by expanding terms in (r/ro) in powers of ε as in (2.17). Finally, identifying terms of
the same order in the resulting equations yields

A =
m

2s(s− 1)
U1, B =

m(2− s)
2(s− 1)

U1, (2.23)

to the leading order in δ. It remains now to match (2.7) with (2.11), following similar
steps as for (2.7) and (2.10), but this time with |θ + α − 1

2
π| � 1 in view of having

region III confined to the immediate neighbourhood of the plane of symmetry. To this
end, we note that approaching I from III requires having Θ∗ � 1 since y∗/z∗ � 1.
This results in

δ3 = δ, t = m+ 1, a = m+ b,

A∗ = −B, U3 = U1/(1 + m).
(2.24)
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Accordingly, we find for region I

Vx = δU1z
m+b−1

[
− 1

2
m

(
x

r0

)
+

m

2(s− 1)

(
r

r0

)s−1

cos(s− 1)θ

]
, (2.25)

Vy = δU1z
m+b−1

[
− 1

2
m

(
y

r0

)
− m

2(s− 1)

(
r

r0

)s−1

sin(s− 1)θ

]
, (2.26)

Vz = U1z
m, (2.27)

to the leading order of approximations in δ, where (Vx, Vy, Vz) are the inviscid
flow velocity components associated with the Cartesian coordinates frame (x, y, z).
Similarly, we find close to the inner limit of region II

Vx = δ
m(2− s)
2(s− 1)

U1R
m+b−1 cos(kΘ), (2.28)

Vy = −U1R
m sin(mΘ), (2.29)

Vz = U1R
m cos(mΘ), (2.30)

to the leading order of approximations in δ, which are readily seen to be analogous
to potential flow velocity components past a swept wedge.

There are two key observations to be made at this stage. The first concerns the
quantity δ (or equivalently δi, i = 1, 2, 3). In conformity with potential flow theory, δ
must be greater than the boundary-layer thickness, that is δ � Re−1/2. On account
of this estimation, it is readily deduced from solutions (2.25)–(2.30) that the coupling
created by the mutual interaction of inviscid flows on the corner walls gives rise to a
crossflow an order of magnitude greater (specifically in the corner-line vicinity) than
that found by Rubin (1966) due to the boundary-layer displacement effect, which is
O(Re−1/2), where Re = LU∞/ν, a characteristic Reynolds number, is assumed to be
large, with U∞ and L denoting typical velocity and length scales in the streamwise
direction, ν being the kinematic viscosity. Obviously, this is a fundamental difference
in order of magnitudes which will prove to be crucial in finding viscous regions and
flow characteristics, hitherto unsuspected, in concave and convex corners alike, as
shown in § 3 and in later sections.

Secondly, the quantity b appearing in solutions (2.25)–(2.30), which remained thus
far undetermined, appears to be arbitrary and expresses thus the generic nature of
these corner flow solutions. Of particular interest here is the case b = 1

2
(1 − m)

for which boundary-layer equations admit self-similar solutions. Subsequently, the
matching requirement (2.18) can be written in the form†

1
2
(1 + m) = q/s = n/1 (2.31)

in which the respective terms represent ratios between the powers of z and r1 appearing
in z1+mr2

1, zqrs1 and znr1 of (2.13) and (2.14).
In line with the above discussion, we will here devote our attention to steady laminar

incompressible boundary-layer flow along a corner of arbitrary angle, obtained when

† In the first version of this paper relation (2.31) was intuitively deduced, and used as a matching
requirement instead of the more general equivalence relationship (2.15), and its consequence (2.18),
which were both absent therefrom.
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Figure 3. A sketch illustrating the structure of three-dimensional viscous layers in the corner
vicinity: zone (i) is obtained when r → 0, θ ∼ 1, (ii) for r large and θ small with rθ ∼ Re−1/2, (iii) is
the blending intermediate layer.

b = 1
2
(1 − m). We start by general considerations of the viscous motion in zones

adjacent to I, II and IV.

3. Boundary-layer structure and approximations
One of the key elements of the matching requirements of the potential flow regions

I and II (discussed in § 2.3) lies in the order of magnitude estimation Θ/θ ∼ δ (with
δ � Re−1/2), which, when coupled to boundary-layer considerations, leads to dividing
the viscous motion into five distinct regions (or three when symmetry is taken
into account) as depicted in figure 3. Here, region (i) represents the usual corner
layer which is fully three-dimensional whilst (ii) mirrors primarily a boundary-layer
motion on a wedge with a crossflow in the x-direction. Accordingly, the intermediate
boundary layer, namely region (iii), must then be allowed to merge smoothly with
the previous ones at its inner and outer limits, respectively. It is specifically this
layer that constitutes the genesis of this new structure, particularly its spanwise
velocity and length scales, which are both O(δ). That is why the present viscous flow
structure is crucially different from the traditional three-region one introduced by
Rubin (1966) (and adopted later by other authors) for the zero streamwise pressure
gradient situation.

To analyse the viscous motion in each of these regions we introduce the following
boundary-layer scaled variables

X = x/Lδx, Y = y/Lδy, ẑ = z/L,

Û(X,Y , ẑ) = vx/U∞εx, V̂ (X,Y , ẑ) = vy/U∞εy, Ŵ (X,Y , ẑ) = vz/U∞,
P̂ (X,Y , ẑ) = p/ρU2∞, (δy, εx, εy)� 1,

 (3.1)

where (vx, vy, vz) are the viscous flow velocity components associated with the (x, y, z)-
directions, p is the pressure, L(δx, δy, 1) and U∞(εx, εy, 1) are characteristic length

and velocity scales such that Û, V̂ , Ŵ and P̂ are O(1); for convenience the hat
symbol ˆ will hereinafter be dropped from z. To derive boundary-layer equations for
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each viscous region, first, definitions (3.1) are inserted into the Navier–Stokes and
continuity equations, then boundary-layer approximations are carried out subject to
the potential flow constraints, equations (2.25)–(2.30); in view of symmetry, we need
only consider then the space defined by z > 0 and α+ θ 6 1

2
π.

In the corner-layer, region (i), boundary-layer approximations require that forces
due to the viscous interaction with both surfaces must, in general, be of the same
order of magnitude. This amounts to having

δx ∼ δy = δ̂, (3.2)

and subsequently εx ∼ εy (= ε, say) from continuity considerations, leading to

Û ∼ δ̂ε−1{1 + O((δ̂/δ)s−2)}, (3.3)

according to (2.25), which must be O(1). Now since δ̂ � δ, it follows that two
distinct situations exist depending upon whether s > 2 or 1 < s < 2 which must
then be joined by a ‘matching’ situation when s ∼ 2, i.e. |α| � 1; such a situation
corresponds to almost planar corners. Additionally, the case s = 1, corresponding
to the quarter-infinite flat-plate problem, gives rise to a singularity and therefore
requires a special treatment. From our boundary-layer order of magnitude analysis,
the following picture emerges:

region (i)

{
concave corners, s > 2: δ̂ = Re−1/2, ε = Re−1/2,

convex corners, s < 2: δ̂ = Re−1/sδ(s−2)/s, ε = Re(1−s)/sδ(2−s)/s,
(3.4)

region (iii) s > 1, but s 6= 2: δx = εx = δ, δy = εy = Re−1/2, (3.5)

region (ii) s > 1, but s 6= 2: δx � δ, εx = δ, δy = εy = Re−1/2. (3.6)

Regarding the semi-infinite flat plate limit, it will shortly be shown in § 5 that:

s→ 2


region (i) : δ̂ = Re−1/2, ε = Re−1/2,

region (iii) : δx = δ, εx = δ/ lnRe, δy = εy = Re−1/2,

region (ii) : δx � δ, εx = δ/ lnRe, δy = εy = Re−1/2.

(3.7)

Questions related to the limit s→ 1 will be tackled in § 8.
It is clear now that different dominant flow characteristics may be expected in each

region, for concave and convex corners alike, and they must be considered separately.
For clarity as well as for convenience, we shall start by examining first the boundary
layer in region (ii).

4. The outer layer: region (ii)
Here, the order of magnitude estimations, (3.6), lead to the following boundary-layer

equations:

V̂ ÛY + Ŵ Ûz = −δ−2P̂ X + ÛY Y , (4.1)

P̂ Y = O(Re−1), (4.2)

V̂ Ŵ Y + ŴŴ z = −P̂ z + Ŵ Y Y , (4.3)

V̂ Y + Ŵ z = 0. (4.4)
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These are to be solved subject to Û = V̂ = Ŵ = 0 on the wall, together with the
potential flow constraints, equations (2.28)–(2.30), as Y → ∞. Equations (4.1)–(4.3)
suggest setting P̂ = P0(z) + δP1(X, z) + δ2P (X, z) + · · · .

To obtain similarity solutions we introduce the following transformations

ψ(Y , z) = cz(m+1)/2f(η), Û(Y , z) = Bz(m−1)/2g(η),

P̂ (X, z) = − 1
2
z2m[1 + δ2(m− 1)z−(1+m)/2BX + · · ·],

}
(4.5)

where Ŵ = ψY , V̂ = −ψz , η = z(m−1)/2Y/c, B= m(2− s)/2(s− 1), and c=
√

2/(1 + m).
Inserting these into equations (4.1)–(4.4) yields

g′′ + fg′ + (β − 1)(1− f′g) = 0, (4.6)

f′′′ + ff′′ + β(1− f′2) = 0, (4.7)

subject to

f = g = f′ = 0 at η = 0,

f′ → 1, g → 1 as η →∞,
}

(4.8)

in which ( . )′ = d( . )/dη. For brevity, numerical results for this region are given and
discussed with those of the intermediate layer since they provide boundary conditions
for it.

5. Boundary layer in almost planar corners
For this situation, we clearly have |s−2| ∼ 4|α|/π� 1. Should we now consider the

potential flow constraints (namely, equations (2.25) and (2.26)) as r → Re−1/2 it would
easily be seen (as in Smith 1975) that the resulting asymptotic form thereof remains
valid (in this limit) if α ∼ O(1/ lnRe) or smaller. The fact that 1 � δ � Re−1/2

suggests setting δ = O(Re−1/M),M > 2 (or δ ∼ Re−1/2 lnRe), and so we may write

α =
K

lnRe
(K ∼ 1), (5.1)

as s→ 2. With this estimation, we can move on now to investigating flow character-
istics in regions (iii) and (i).

5.1. The intermediate layer: region (iii)

5.1.1. Governing equations

According to the above discussion, (2.25) and (2.26) reveal that region (iii) is
characterized by εx = δ/ lnRe for s ∼ 2, together with εy = δy = Re−1/2, and δx = δ
in view of boundary-layer approximations. These scales lead to a set of boundary-
layer equations as (4.1)–(4.4) but now with δ−2 lnRe replacing δ−2 in (4.1), and so
similarity solutions can be obtained by introducing the following variables

ψ1(X,Y , z) = cz(m+1)/2

[
f(η) +

K

lnRe
f1(ξ, η) + · · ·

]
,

Û(X,Y , z) =
2m

π
Kξ(ln ξ − 1)z(m−1)/2g1(ξ, η),

 (5.2)

where Ŵ = ψ1Y , V̂ = −ψ1z , and ξ = z(m−1)/2X. We find

g′′1 + fg′1 + γ(ξ)(β − 1)(1− f′g1) = ξ(β − 1)f′
∂g1

∂ξ
, (5.3)

f′′′ + ff′′ + β(1− f′2) = 0, (5.4)
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subject to

f(0) = f′(0) = g1(ξ, 0) = 0,

g1(ξ,∞) = f′(∞) = 1,

g1(1, . ) = g( . ),

 (5.5)

in which γ(ξ) = (2 ln ξ − 1)/(ln ξ − 1), and 0 < ξ 6 1 in view of the relevant scalings
and definitions. Observe that system (5.3)–(5.5) leads, when β = 1, to the stagnation
point flow solution g1 found by Smith (1975). Note also that it asymptotes to (4.7)–
(4.8) as ξ → 1, which assures matching with region (ii). However, when ξ → 0, the
match with region (i) would require an infinite number of terms for reasons similar
to those given in (Smith 1975), since, as r → Re−1/2, terms in (ln r/r0)

n start to have
‘comparable contributions to the main effect’ of inviscid–viscous flow interaction.

5.1.2. Results and discussions

Equations (5.3)–(5.5) were discretized using the Crank–Nicholson approximation
in the ξ-direction and the resulting equations were then solved by an implicit second-
order finite differencing scheme. Hereinafter, numerical results will in general be
presented in terms of the velocity components u(ξ, η), v(ξ, η) and w(ξ, η):

(Û(X,Y , z), V̂ (X,Y , z)) = z(m−1)/2(u(ξ, η), v(ξ, η)), Ŵ (X,Y , z) = zmw(ξ, η), (5.6)

and in terms of the streamwise vorticity function ω(ξ, η) = −uη/c, as deduced from(
εy

δx

)
V̂ X −

(
εx

δy

)
ÛY ∼

(
δRe1/2

lnRe

)
zm−1ω, (5.7)

to the leading order in Re−1 for the present situation. In particular, we will set,
without loss of generality, K = 1 in this subsection only.

Numerical results are presented in figures 4 and 5. The effect of varying the pressure
gradient parameter β on the crossflow shear stress uη(ξ, η = 0)/c is illustrated in
figure 4. Here, it is seen that uη(ξ, η = 0)/c behaves in a non-monotonic fashion
with respect to β and tends always to zero as the origin ξ = 0 is approached. The
corresponding evolution of the velocity profile u(ξ, η) is shown in figure 5(a); we
observe here that u(ξ, η) exhibits, over a portion of the ξ-range, an inflection point
for −0.19884 . β . 0.706 · · ·, a behaviour that is synonymous with a streamwise
crossflow–vortex structure formation. This is shown in figure 5(b) which depicts
constant contour lines of the streamwise vorticity function ω(η, ξ); for 0 < β <
0.706 · · ·, the vorticity contours show layers of positive (away from the wall) and
negative (generated at the wall) vorticity. We see that the vortex lies near the centre
of region (iii) for β small, and drifts, with increasing β, downwards towards the wall
while moving sideways towards the outer limit ξ = 1. Importantly, since the existence
of crossflow–vortex structures is known to greatly influence other disturbances (Reed
& Saric 1989), this result obviously suggests investigating the corner-flow instability in
the intermediate layer proper, and studying its effect on the corner layer, particularly
for a small streamwise pressure gradient regime. We note, at this stage, that such a
structure was predicted by Moore (1956) (specifically within the corner layer) but has
remained unconfirmed in the literature so far. We will see in §§ 6.1.3 and 7.2.3 that
such vortices are also generated by flows along concave and convex corners alike,
including the quarter-infinite flat-plate limit.

In this flow regime, for almost planar convex corners (K < 0), the crossflow pattern
in region (iii) is practically a mirror image of that obtained for concave corners and
is obviously associated to a closed vortex rotating in the opposite sense.
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Figure 4. Almost planar corners, region (iii): distribution of the x-component of the wall shear
stress (Kuη(ξ, η = 0)/c, K = 1). •, linear relationship uη(ξ, η = 0)/c = −0.114ξ.

5.2. The corner layer: region (i)

5.2.1. Governing equations

Here, we have δx = δy = εx = εy = Re−1/2. Hence, the boundary-layer equations
are

ÛÛX + V̂ ÛY + Ŵ Ûz = −PX + ÛXX + ÛY Y , (5.8)

ÛV̂ X + V̂ V̂ Y + Ŵ V̂ z = −PY + V̂ XX + V̂ Y Y , (5.9)

ÛŴX + V̂ Ŵ Y + ŴŴ z = −P0z + ŴXX + Ŵ Y Y , (5.10)

ÛX + V̂ Y + Ŵ z = 0, (5.11)

in which P̂ = P0(z) + Re−1/2P1(X,Y , z) + Re−1P (X,Y , z) + · · ·.
To derive similarity solutions we pose first r̂2 = X2+Y 2 and use the two-dimensional

conformal transformation

r̂ exp(iθ) = cz(1−m)/2ρn exp(inχ) (n = 2/s),

(ξ̃, η̃) = ρ(cos χ, sin χ),

}
(5.12)

followed by eliminating the pressure gradient terms in the x- and y-directions to
obtain the streamwise vorticity equation. This amounts to seeking solutions in the
form

Û = −Z{J−1/2[F cos(θ − χ)− G sin(θ − χ)] + (β − 1)ρnH cos θ}, (5.13)

V̂ = −Z{J−1/2[F sin(θ − χ) + G cos(θ − χ)] + (β − 1)ρnH sin θ}, (5.14)

Ŵ = zmH, ω = (Fη̃ − Gξ̃)/J, (5.15)

where F, G and H are functions of (ξ̃, η̃) only with J = n2ρ2(n−1) and Z = c−1z(m−1)/2;
here ( . )ξ̃ , ( . )η̃ stand for partial derivatives with respect to ξ̃ and η̃, respectively. In

what follows, we will drop the tilde from ξ̃ and η̃ , and refrain, for the sake of brevity,
from giving the resulting similarity equations.

The boundary conditions are

F = G = H = 0 at η = 0, (5.16)
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together with

F ∼ ξ[1− 1
2
β(1 + exp(−2K/π))] + O(α) for H → 1,

Gη ∼ [1− 1
2
β(1− exp(−2K/π))] + O(α) for ω → 0,

}
(5.17)

as η →∞, in which conditions on F and G have been deduced from (2.25) and (2.26)
subject to definitions (5.13) and (5.14) as s→ 2, with K replacing K(M−2)/M herein;
in deriving these conditions, only terms in (δRe1/2)2−s have been approximated.

Additionally, symmetry requires

Hξ = Gξ = F = ω = 0 at ξ = 0 (5.18)

which, as in Smith (1975), suggests, together with (5.17), looking for solutions in
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Figure 5. Almost planar corner, region (iii): effect of the parameter β on (a) the evolution of the
crossflow velocity u, and (b) the streamwise vorticity ω.

the form

(F,G,H,ω)(ξ, η) = (ξF0, G0, H0, ξω0)(η) + (F1, G1, H1, ω1)(ξ, η)/ lnRe+ · · · . (5.19)

Substituting (5.19) into the governing equations of the similarity solutions yields

H0ηη + G0H0η + β(1−H2
0 ) = 0, (5.20)

ω0ηη + G0ω0η + [F0 + (2− β)H0]ω0 − 2(1− β)H0H0η = 0, (5.21)

F0 + G0η − (2− β)H0 = 0, (5.22)

ω0 − F0η = 0, (5.23)

to the leading order in Re−1. The boundary conditions are

F0 = G0 = H0 = 0 at η = 0,

F0 → 1− 1
2
β(1 + exp(−2K/π)), H0 → 1, ω0 → 0 as η →∞.

}
(5.24)

System (5.20)–(5.24) fixes primary flow features in region (i), and is in essence the
same as that derived by Ridha (1990) for the corner-layer side-edge, and Ridha
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(1996) for forced convection flow states. It has also the same form as that derived by
Dhanak & Duck (1997, system (3.1)–(3.4), p. 1797), Duck et al. (2000) and Duck &
Dry (2001), specifically for K = 0 but with different conditions as η → ∞. Although
system (5.20)–(5.24) has been derived for K ∼ 1, it turns out to be instructive to look
into its properties as |K| → ∞. For instance, when K →∞ we recover the corner-layer
side-edge boundary conditions corresponding to concave corner situations. Physically
speaking, this implies that flow features at the corner-layer side-edge (or at the inner
limit of the intermediate boundary layer) become dominant throughout the corner-
layer as s→ 2. Indeed, it will be seen later (for concave corners, § 6.1.2) that similarity
solutions in the inner limit of region (iii) are governed by a set of equations equivalent
to (5.20)–(5.23), in which the governing equation of F0 can be derived by substituting
ω0 = F0η from (5.23) into (5.21), followed by integrating the result once with respect
to η to find

F0ηη + G0F0η + F2
0 + (β − 1)H2

0 = Q0, (5.25)

after exploiting (5.22) and using boundary conditions at η = 0, Q0 being a constant
determined by applying the appropriate boundary conditions at η = ∞.

On the other hand, when K is set identically equal to zero the two-dimensional
wedge configuration is recovered, of course, with condition (2.25) (subsequently (5.17))

leading to Û(X,Y = ∞, z) = 0 (subsequently F(ξ, η = ∞) = 1− β), that is an inviscid
flow with a zero crossflow component. One solution of system (5.20)–(5.24) in this
particular regime is obviously the classical (two-dimensional) Falkner–Skan solution
(Rosenhead 1966) for which F0 = (1 − β)H0. However, there exists a second family
of solutions in this regime which is completely three-dimensional in nature. It is our
view that this solution family is not linked to a corner flow since K = 0 corresponds
to α = 0. Nevertheless, this solution family is important in its own right for it does
represent, for example, a class of boundary-layer flows on swept surfaces and as such
deserves more attention. In this connection, see the studies by Duck et al. (2000) and
Duck & Dry (2001) on three-dimensional boundary-layer flows governed essentially
by the same similarity equations, which, in addition, highlight interesting stability
aspects thereof, and their possible link to bypass transition.†

System (5.20)–(5.24) has numerically been solved by a fourth-order Runge–Kutta
method and non-uniqueness of solutions is found common in the (K, β) parameter
space. In this regard, and in view of the above discussions, we find it preferable
to consider separately some of their asymptotic features according to the order of
magnitude of K; numerical results will be presented in terms of (u0, v0, w0):

(u(ξ, η), v(ξ, η), w(ξ, η)) = (ξu0(η), v0(η), w0(η)) + O(1/ lnRe). (5.26)

5.2.2. The K = O(1) case

Numerical results are shown in figures 6–9. We shall first focus our attention on
the variation of w0η(η = 0) and u0η(η = 0) in the (K, β) parameter space; these are
depicted in figure 6, with the Blasius point indicated on figure 6(a) for reference and
completeness. Here, it is generally seen that the solution is non-unique with at least
two distinct families of solutions existing over the range of values of (K, β) shown.
That is why we find it convenient to refer, hereinafter, to that family of solutions
having (for the most part of the β range shown, particularly for β > 0) the greatest
value of w0η(η = 0) as the upper solution branch, the other family being referred to
now as the lower branch.

† This was brought to our attention by one of the referees.



Flow along streamwise corners revisited 239

1.1

0.6

0.1

–0.4

K= 0

Upper
Lower
Falkner–Skan
Blasius

w0è (è = 0)
0.4

0

–0.4

u0è (è = 0)

–0.8
1.1

0.6

0.1

–0.4

K= 0.014
0.4

0

–0.4

–0.8
0.4

0

–0.4

–0.8
0.4

0

–0.4

–0.8

1.1

0.6

0.2

–0.3

K= 0.680

1.2

0.7

0.2

–0.3

K= 0.700

–0.5 –0.2 0.1 0.4 0.7 1.0
b

–0.5 0 0.5 1.1 1.6 2.1
b

(a)

–1.5 –1.0 0
b

–0.5

(b)

0.3 0.5 0.9
b

0.7
0.8

0.9

1.1

1.2

0.8

0.9

1.1

1.2
0.8

0.9

1.1

1.2
Blasius

–0.5

–1.0

0.1

0.6

–0.5

–1.0

0.1

0.6

–0.2

–0.6

0.2

0.6

w
0è

 (
è

=
0)

 (
K

=
–

0.
1)

w
0è

 (
è

=
0)

 (
K

=
–

0.
75

)
w

0è
 (

è
=

0)
 (

K
=

–1
.0

)

Figure 6. For caption see page 241.



240 A. Ridha

–1.5 –1.0 0
b

–0.5

(c)

0.3 0.8 1.8
b
1.3

–1

0

1

2

0

1

2

0

1

2

2

1

3

4

u 0
è 

(è
=

0)
 (

K
=

–
0.

1)
u 0

è 
(è

=
0)

 (
K

=
–

0.
75

)
u 0

è 
(è

=
0)

 (
K

=
–1

.0
)

–5 –4 –2
b

–3

(d)

0

4

8

12

–6

0

6

12

3

6

9

12
K = –0.1

30

40

50

0

–2

4

6

4

–2

6

8

w0è (è = 0)

0

–1

0

1

–1

0

1

2

0

10

20

0

u0è (è = 0)

–4

–8

2

0

8

2

–1 –5 –4 –2
b

–3 –1

K = –0.75

K = –1.0

Figure 6. For caption see facing page.



Flow along streamwise corners revisited 241

–4 –2 0
K

2

(e)

–0.2

0.6

1.3
–0.1

1.1

1.5

0.8

1.0

1.3

0.5

0.7

w0è (è = 0)

0.1

0.3
–0.9

0.5

2.0
–0.8

1.3

0.8

0.7

0.2

–0.3
4 –4 –2 0

K
2 4

0.6

2.0 u0è (è = 0)

b =1.0

b =0.5

b =0.25

b =0.1

b =–0.1
b =0.25

b =0.1

b =–0.1

b =0.1

b =0.25

b =0.5

b =1.0

Figure 6. Almost planar corners, region (i), with K ∼ O(1): W0η(η = 0) and U0η(η = 0)
distributions with varying β and K , as indicated.

The effect of varying β, with K fixed and positive, is shown in figure 6(a). When
K = 0, the classical two-dimensional Falkner–Skan solution (identified with u0(η) = 0)
is found to coincide with the lower branch for β . 0.1927 . . . and with the upper for
β & 0.1927 . . . , both branches becoming instantaneously identical when β ' 0.1927 . . . .
As K increases, both solution branches become completely three-dimensional in
nature, and a small loop solution emerges close to the origin for K > 0.68.

Results for K < 0 and fixed, with varying β, are illustrated in figures 6(b)–6(d ).
Here, the main solution branches are seen to split up, over the range of (K, β) shown,
into two distinct parts separated by a β-interval for which no solution exists. For
β < −1, a further solution family emerges (see figure 6d ) which is apparently not
linked to the two main branches extending from the case K = 0 (figure 6a). This
new solution is characterized by relatively large positive values of w0η(η = 0), and
is associated to an overshoot in the streamwise velocity w0(η) profile (see figure 7c).
That is why it will be referred to as the ‘overshoot’ branch.

Lastly, the effect of varying K , with β fixed, is shown in figure 6e. Here, when β
is small and positive, no solution is found to exist for values of K below some small
negative value: for example, for β = 0.1 and 0.25 no solution exists when K is smaller
than −0.123 and −0.03, respectively.

We consider now solution profiles for w0(η) and u0(η), a selection of which is
presented in figure 7, namely for K = 0.70 and −0.75. For the particular case K = 0
(figure 7b), profiles for w0(η) belonging to the upper solution branch are generally
seen to be reversed for β < −0.4283 with solutions taking the form of a massively
displaced shear layer on the lower portion thereof for −0.4678 6 β 6 0. For the
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Figure 7. Almost planar corners, region (i), with K ∼ O(1): w and u profiles for different K-states,
β as indicated.

crossflow velocity, we generally see that u0(η) possesses, when K = 0, a jet-like profile
directed towards the symmetry plane for β > 0.1927 . . . and away therefrom for
β < 0.1927 . . . , the case β = 0.1927 . . . pertaining to a ‘zero’ crossflow, u0(η) ≈ 0.
Notice that, when K 6= 0, u0(η) has, over a portion of the range of values of β
shown, a reversed profile associated with the main upper solution branch for K > 0
(figure 7a) and with the lower branch when K < 0 (figure 7c). Turning now to the
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‘overshoot’ solution branch, we see that u0(η) has either a reversed profile (dotted
lines) or changes its direction twice (solid lines), over a portion of the range of values
of β shown in figure 6d ; this is coupled to a marked overshoot (approaching a
‘jet-like’ behaviour) in the streamwise velocity solution profile w0(η), which suggests
a substantial transfer of momentum from the secondary flow to the main flow.

To gain a deeper insight into results presented so far, a selection of vector plots of
the secondary flow velocity for K = 0 are shown in figure 8, and over a range of (K, β)
values in figure 9; in the latter figure, lower solution branch results are depicted on the
left-hand side while those of the upper branch are plotted on the right-hand side. We
see that the upper three-dimensional solution branch for K = 0 (figure 8), is associated
to a secondary flow drifting upwards and away from the plane of symmetry when
β = 0, but downwards and towards the said plane for β = 1. These results appear
to be consistent with those of Dhanak & Duck (1997) (lower solution branch in
their convention) for the rectangular corner flow. Vector plots, for the upper solution
branches K = 4 flow state, are seen to reflect a similar behaviour. In contrast, for
K < 0 (over the range of (K, β) shown) the secondary flow (corresponding to upper
solution branches) drifts, for β = 0.1, away from the symmetry plane and upwards
towards the outer reaches of the shear layer, but downwards and away from the plane
of symmetry for β > 0.5. On the other hand, lower solution branches are seen to lead
generally to more complex crossflow patterns characterized, for some flow states, by
collisions of wall layers in the vicinity of the symmetry plane.

5.2.3. The |K| � 1 case

As pointed out above, one of the solutions obtained when K = 0 is the two-
dimensional classical Falkner–Skan solution. In this particular case, the three-
dimensional solution behaviour can be sought by solving for the perturbation solution
(u1, v1, w1):

(u0, v0, w0)(η) = (u00, v00, w00)(η) +K(u1, v1, w1)(η) + O(K2), (5.27)

obtained for K � 1, and satisfying u1(η = 0) = w1(η = 0) = 0 together with u1(η =
∞) = −β/π, w1(η = ∞) = 0, (v00, w00) being the Falkner–Skan solution. Again, for
brevity and owing to lack of space, the corresponding equations are not given here.

Results for w1η(η = 0) and u1η(η = 0) are shown in figures 10(a) and 10(b).
We see from figure 10(a) that both w1η(η = 0) and u1η(η = 0) exhibit a singular
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behaviour in the vicinity of β ' 0.193 and at the lower bound β = −0.19884, which
reflects a change in the direction of the crossflow velocity component as observed
from figure 10(d ). Comparison with solutions obtained for K = O(1) reveals that the
perturbation solution is consistent with those of lower solution branches for β < 0.193
and with upper ones otherwise; its behaviour near β = 0.193 is therefore a reflection
of that arising close to 0.1927, at which the crossflow changes direction.

5.2.4. The K → −∞ case

As observed by Smith (1975) for the stagnation point flow into a corner, when
K becomes large and negative, the viscous layer becomes thinner and thinner until
η becomes small and O(exp(K/π)). This is also valid here and so setting η =
(2sgn(β)/β)1/2 exp(K/π)ζ, with

F0 = 1
2
βsgn(β) exp(−2K/π)F(ζ) + O(exp(−K/π)),

G0 = 1
2
(2βsgn(β))1/2 exp(−K/π)G(ζ) + O(1),

H0 = H(ζ) + O(exp(K/π)),

 (5.28)

we find after substitution in (5.20)–(5.23) and (5.24)

d3G
dζ3

+ Gd2G
dζ2

+ 1−
(

dG
dζ

)2

= 0, F = −dG
dζ
,

d2H
dζ2

+ GdH
dζ

= 0, (5.29)

subject to F(0) = G(0) = dG(0)/dζ = H(0) = 0 together with F(∞) = −sgn(β),
dG(∞)/dζ = sgn(β), H(∞) = 1. Notice that, when β = 1, equations (5.29) are es-
sentially the same as those found by Smith (1975). Notice also that the governing
equation of G, together with the corresponding boundary conditions, reproduces the
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two-dimensional stagnation point flow solution when β > 0. However, in view of the
requirement of absence of exponential growth for G(ζ) as ζ → ∞, there exists no
solution for this equation when β < 0. Crucially, equations (5.29) suggest that, for a
convex corner, the fluid motion becomes mainly determined by the secondary flow in
the (x∗, y∗)-plane, a flow property which turns out also to be valid for the full problem
treated in § 7.

Further, we find

F0ζ(ζ = 0) = −1.23259(β/2)3/2 exp(−3K/π),

H0ζ(ζ = 0) = 0.57047(β/2)1/2 exp(−K/π),

}
(5.30)

to the first order in K , which tells us that the wall shear stress is now considerably
larger than for concave corner situations, K > 0. Such marked differences exist
between the behaviour of the local flow in the two corner configurations because of
the role played by the terms in (x/r0) and (r/r0)

s−1 in (2.25). It is clearly seen here that
for concave corners (s > 2) the former term dominates, whereas for convex corners
(1 < s < 2) it is the latter which becomes dominant.

6. Boundary layer in concave corners, s > 2

Here, attention will be focused exclusively on viscous motion in the intermediate
layer. Flow in the corner layer is not considered here since it has already been treated
elsewhere; for this layer, equations (5.8)–(5.11) together with appropriate boundary
conditions admit similarity solutions as shown in Ridha (1990) and in Dhanak &
Duck (1997), with numerical solutions and detailed discussions given in the latter. See
also the work of Duck et al. (1999) on non-similarity solutions, in which they have
considered the effects of wall transpiration.

6.1. The intermediate layer: region (iii)

6.1.1. Governing equations

In this region, we have δx = εx = δ together with εy = δy = Re−1/2 by virtue of
boundary-layer approximations. We find

ÛÛX + V̂ ÛY + Ŵ Ûz = −δ−2P̂ X + ÛY Y , (6.1)

P̂ Y = O(Re−1), (6.2)

ÛŴX + V̂ Ŵ Y + ŴŴ z = −P̂ z + Ŵ Y Y , (6.3)

ÛX + V̂ Y + Ŵ z = 0. (6.4)

To obtain similarity solutions, we introduce the following quantities

Û = −z(m−1)/2c−2[F(ξ, η) + (β − 1)ξH(ξ, η)], (6.5)

V̂ = −z(m−1)/2c−1[G(ξ, η) + (β − 1)ηH(ξ, η)], (6.6)

Ŵ = zmH(ξ, η), P̂ = − 1
2
z2m + δ2zm−1P (ξ) + · · · (6.7)

into the boundary-layer equations, leading to

Fηη + FFξ + GFη + (β − 1)ξH2 = Q, (6.8)

Hηη + FHξ + GHη + β(1−H2) = 0, (6.9)

Fξ + Gη − (2− β)H = 0, (6.10)
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after dropping the overbar. Here,

Q = 1
4
β2ξ − sβ(2− β)

4(s− 1)
ξs−1 +

β2

4(s− 1)
ξ2s−3,

on account of potential flow constraints at η = ∞.
The boundary conditions are

F = G = H = 0 at η = 0, (6.11)

together with

F → 1
2
ξ

[
2− β − β

(s− 1)
ξs−2

]
, H → 1 as η →∞ (6.12)

for ξ ∈ [0, 1], in addition to a given solution at some ξ-plane. To this end, use can
be made of the solution at the inner limit of region (ii) or of asymptotic solutions of
system (6.8)–(6.12) for ξ � 1. This enables us, in general, to use standard marching
numerical schemes from either limit depending on the sign of F appearing in the
second term of equations (6.8) and (6.9). However, our efforts to solve these equations
numerically by such schemes have encountered many difficulties related to the solution
behaviour, particularly in the inner limit. That is why we find it preferable to discuss
these issues first.

6.1.2. Numerics and solution properties as ξ → 0 and ξ → 1

The solution of (6.8)–(6.12) at ξ = 1 is readily derivable from that of system (4.6)–
(4.8) and always yields F > 0. This suggests that a parabolic marching numerical
scheme in the decreasing ξ-direction is plausible for the full problem.

On the other hand, for ξ < 1, with η fixed, we set

(F,G,H)(ξ, η) =

∞∑
k=0

ξk(s−2) (ξFk, Gk, Hk) (η), (6.13)

which can be used either as an initial boundary condition in a parabolic marching
scheme or for the purpose of verification. Inserting these expansions into (6.8)–(6.10)
leads, for the zeroth-order solution in ξ, to the same set of equations as (5.25), (5.20)
and (5.22), respectively, with Q0 = 1

4
β2. The boundary conditions become

Fk = Gk = Hk = 0 at η = 0, for k = 0, 1, . . . , (6.14)

together with

F0 → 1
2
(2− β), H0 → 1,

F1 → − β

2(s− 1)
, Fk+1 → 0, Hk → 0 for k = 1, 2, . . .

 (6.15)

as η → ∞. Note that the zeroth-order system (or its equivalent) was discussed in
some detail in (Ridha 1992) and in (Dhanak & Duck 1997), and found to have a
dual solution in the range −0.0367 · · · . β 6 2. For reference and completeness, the
distribution of F0η(η = 0) and H0η(η = 0) are shown in figure 11. Note that, here
again, we will refer to that family of solutions with the greatest value of H0η(η = 0)
as the upper solution branch, the Blasius solution belonging consequently now to the
lower branch.

According to expansion (6.13), it is generally found that F > 0 for ξ � 1, implying
that a parabolic marching numerical scheme in the positive ξ-direction is ill-posed
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and must consequently be excluded. In conformity with these indications, we have
implemented a fully implicit second-order finite-difference marching numerical scheme
(MNS) using a Crank–Nicholson approximation in the ξ-direction with a Newton–
Raphson procedure for the nonlinear terms. The resulting discrete equations are kept
coupled and simultaneously solved for the vector function (F,G,H) at each ξ-plane,
with initial conditions applied at ξ = 1. This has led to a highly convergent scheme
where three to five iterations suffice to obtain a convergent solution to order 10−8. It
was found that: (i) converged numerical solutions reproduced always the asymptotic
upper solution branch as ξ → 0, and (ii) as β increased beyond a certain bound
(depending on the corner angle) the numerical scheme broke down at some small
value of ξ; for instance, for a 45◦ corner such a breakdown was found to take place at
ξ . 0.475 when β = 0.9, whilst for a rectangular corner it occurred close to ξ . 0.34
when β = 1.0.

In an attempt to explain the solution behaviour as ξ → 0 and the said breakdown,
we assume that the basic state solution (denoted by subscript b) has eigensolutions:

(F,G,H)(ξ, η) = (ξFb(η), Gb(η), Hb(η)) + ξλ(ξFλ(η), Gλ(η), Hλ(η)) + · · · . (6.16)

These are similar to those employed in Libby & Fox (1963), Luchini (1996), Duck
et al. (1999, 2000) and Duck & Dry (2001), but are specifically applied in the spanwise
direction, and, as such, are effectively (in the final analysis) analogous to those used by
Luchini (1996).† However, whereas there they were used to study algebraic growth of
Reynolds-number-independent eigenmodes with respect to the streamwise distance,
they are employed here to investigate algebraic growth in the spanwise direction
only. One more important difference is that in Luchini (1996) it was necessary to
assume spanwise disturbances of large wavelength compared with the boundary-layer
thickness. Here, this is no longer so, namely because both the spanwise velocity and
length scales are now of an order of magnitude (in the event, δ) greater than the
normal scale Re−1/2. Inserting expansions (6.16) into equations (6.8)–(6.10) leads to
perturbation equations subject to the following boundary conditions

Fλ(0) = Gλ(0) = Hλ(0) = Fλ(∞) = Hλ(∞) = 0. (6.17)

In view of expansions (6.13), we have taken Fb = F0, Gb = G0, Hb = H0 which yields
an eigenvalue problem independent of the corner angle, and is therefore generic in

† The author is indebted to one of the referees who brought this aspect to his attention.
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nature. To solve the perturbation equations, a numerical scheme, based on a fourth-
order Runge–Kutta method, was used and real parts of the eigenvalue λr = Re{λ}
are plotted in figure 12. Here, are depicted only the first few modes (the smallest
in magnitude) with solutions corresponding to the primary upper solution branch
sketched in solid lines and those due to the lower branch in dotted lines; note that
all the shown modes are real, but complex modes have also been found. Over the
range of values of β shown, the following picture has emerged: (i) for the first mode,
λr approaches zero at the lower bound β = −0.0367 . . . which connects the upper and
lower solution branches; (ii) λr > 0 for the upper branch except for a number of
isolated points for which λr < 0 (sometimes very large); and (iii) −1 < λr 6 0 for the
first mode associated with the lower solution branch. Clearly, the latter result suggests
that the lower branch full-problem-solution state becomes unstable as ξ → 0. That
is possibly why numerical solutions obtained so far do always reproduce the upper
solution branch in this limit. At this stage, we note that these results are consistent,
in general, with those of Ridha (1992) (and in some sense with the recently published
work of Duck & Dry (2001) on three-dimensional disturbances to boundary-layer
flows) regarding the stability of solutions/flows related to (F0, G0, H0). In particular,
they also suggest (when projected in the physical space) that, for the lower solution
branch (and should the corresponding flows exist in nature), the u-component of the
perturbation would be expected to decay in the intermediate layer (if the pressure
gradient is not too small), but its w-component would grow unboundedly as x → 0.
This regime is analogous to the spatial instability mechanism discussed by Luchini
(1996) in his study of the Blasius boundary-layer instability, which he proposed
as a good candidate for the initial linear-amplification stage of bypass transition.
Importantly, when coupled to the recent investigation of Parker & Balachandar (1999)
on viscous and inviscid instabilities of a flow along a streamwise corner, in which they
have found that the growth rate of incoming oblique disturbances is enhanced by the
corner (compared to a decreasing growth rate of outgoing disturbances), these results
raise the issue of the flow instability in the inner limit of the intermediate layer, and
of its role in the overall (or its effect on the corner) boundary-layer instability.

In view of the above, and in order to overcome the breakdown problem, we have
treated system (6.8)–(6.10) as a pseudo-elliptic for which boundary conditions at
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ξ = 1 and at some small value of ξ were applied, and used a Newton–Raphson
iterative direct numerical scheme (DNS) to solve for all grid points simultaneously.
This enabled us to overcome the breakdown problem encountered by the parabolic
marching scheme (MNS) in so far as the upper branch is concerned, but difficulties
faced in the computations of the lower branch solutions persisted. Many numerical
experimentations were conducted with lower branch boundary conditions (obtained
using four-term solutions based on expansions (6.13)) imposed at ξ = ξ0 6 0.1 for
various values of β. It was found that solutions obtained for β > 0.5 coincided for
most of the computational domain with the upper branch solutions, and suffered
from marked oscillations as ξ0 is approached; these were observed to spread out
throughout the computational domain for β . 0.5. Such a behaviour strongly hints
that the occurrence of eigensolutions associated with the lower branch seems to be the
principal source behind our computational difficulties. Finally, a further attempt to
overcome this problem imposed itself, namely using TVD (total variation diminishing)
schemes in which artificial dissipation can be introduced (in a controlled nonlinear
fashion) in order to damp out the effect of the eigensolutions. To this end, we have
implemented various procedures based on schemes suggested by Davis (1984), Yee
(1987) and more recently by Sun & Takayama (1999) for the two-dimensional Euler
equation. Our choice was mainly conditioned by the fact that system (6.8)–(6.10), when
written in conservative form, leads to Jacobian matrices (arising in TVD methods)
which are singular. Throughout, the computational difficulties associated with the
lower branch solution persisted and it became obvious that this problem goes beyond
the scope of the present paper.

6.1.3. Results and further discussion

Numerous computations were conducted for corners of angles π − 2α = 45◦, 90◦
and 135◦, the results of which suggested that it suffices to focus attention on the
rectangular corner situation. Results for this case are presented in figures 13–15 in
terms of u(ξ, η) and w(ξ, η) for the velocity variables, and ω(ξ, η) = −uη/c for the
streamwise vorticity.

For the upper solution branch, we start by focusing our attention on distributions
of wη(ξ, η = 0)/c and uη(ξ, η = 0)/c, shown in figure 13 for various values of β, while
at the same time recalling that the skin friction vanishes at the corner line (Zamir
& Young 1970; Rubin & Grossman 1971; Barclay 1973; Barclay & Ridha 1980;
Dhanak & Duck 1997). This, when taken into account, enables us to observe a striking
qualitative resemblance between our theoretical results for wη(ξ, η = 0) (figure 13a,
specifically for small values of the pressure gradient parameter β, particularly for
β = 0.05), and the experimental ones of Zamir & Young (1970), corresponding to
laminar flow along a rectangular corner under ‘zero’ streamwise pressure gradient
conditions. However, we shall refrain from drawing definite conclusions from this
resemblance in view of differences stemming from length scales of the corner and
intermediate layers together with, which is more important, the effect of the pressure
gradient coupled to the leading edge form on the flow stability, and eventually on the
interpretation of the experimental results. From figure 13(b), we generally observe that
the x-component of the wall shear stress, uη(ξ, η = 0)/c, exhibits a non-monotonic
behaviour qualitatively similar to that of the flat-plate limit, depicted in figure 4.
Results illustrating the crossflow evolution and constant vorticity contours are shown
in figure 14. These do appear to constitute a regular extension of those of the flat-
plate limit, shown in figures 5(a) and 5(b), and confirm further the (conjecture-based)
prediction made by Moore (1956) regarding the existence of a vortex pair originating
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Figure 13. Rectangular corner configuration, region (iii): (a) wη(ξ, η = 0) and (b) uη(ξ, η = 0)
distributions, β as indicated: · · · , lower; ——, upper.

from the corner vertex. Note that, in the present flow state, a two-layer vorticity
(negative in the wall vicinity and positive far from the wall) is now obtained for
0 < β . 1 compared to 0 < β . 0.706 · · · for almost planar corners.

With regards to the lower solution branch, results are computed using a four-term
approximation according to (6.13); these are shown in figure 13, plotted in dotted lines
for distributions of wη(ξ, η = 0)/c and uη(ξ, η = 0)/c, and in figure 15 for the crossflow
profiles, u(ξ, η). From the former figure, we observe that they differ considerably from
those of the upper branch solution, particularly for β = 1, and exhibit a non-
monotonic behaviour over the range of values of β and ξ shown. Turning to the
evolution of crossflow profiles, figure 15 suggests that a closed streamwise vortex
would also be generated within the intermediate layer for moderately small values
of β.

The overall flow picture emerging thus far raises further questions, certainly worthy
of investigation, concerning corner flow instability particularly in the light of the
occurrence of eigensolutions discussed in the previous subsection, and in relation
to the crossflow–vortex structure. On the whole, this appears to be consistent with
difficulties described by Zamir (1981) in observing stable laminar flow in a corner
under conditions of zero streamwise pressure gradient at large Reynolds numbers.
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7. Boundary-layer flow in convex corners, 1 < s < 2

7.1. The corner layer: region (i)

For convex corners, the order of magnitude estimations, (3.4), show that (δRe)−1 6
δ̂ 6 Re−1/2 with δ > ε > Re−1/2 over the range 1 6 s 6 2. This tells us that the corner
layer is much thinner than was previously reported by Barclay & Ridha (1980) for

the strictly zero streamwise pressure gradient case. In that work, both δ̂ and ε were
taken to be O(Re−1/2).

In view of of these estimations, boundary-layer approximations lead (for s suffi-
ciently smaller than two) to the following boundary-layer equations

ÛÛX + V̂ ÛY = −PX + ÛXX + ÛY Y , (7.1)

ÛV̂ X + V̂ V̂ Y = −PY + V̂ XX + V̂ Y Y , (7.2)

ÛŴX + V̂ Ŵ Y = ŴXX + Ŵ Y Y , (7.3)

ÛX + V̂ Y = 0, (7.4)
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Figure 14. Rectangular corner configuration, upper solution branch in region (iii): (a) evolution
of u(η, ξ) profiles, β and ξ as indicated. (b) streamwise vorticity ω(η, ξ) contours, β as indicated.

for which we have set

P̂ = P0(z) + (Reδ̂)−1P1(X,Y , z) + (Reδ̂)−2P (X,Y , z) + · · · . (7.5)

This outcome is rather surprising, and is in striking contrast with that obtained
for the concave corner situation, for system (7.1)–(7.4) contains no derivatives with
respect to the streamwise direction (the z-axes), and this is despite the fact that close
to the corner line the flow is expected to be fully three-dimensional. Nevertheless, such
a result is not confined to this particular corner problem since an analogous situation
was reported for boundary-layer motion in the neighbourhood of the intersection of
a concave cylindrical surface and a plane surface (Gurevich 1981), and close to the
line of intersection of curved surfaces (Gurevich 1985).
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Here, we immediately see that (7.1), (7.2) and (7.4) are effectively the two-
dimensional Navier–Stokes equations. We also observe that the pressure gradient
term is now absent from the streamwise momentum equation, (7.3). This is a crucial
result which tells us that the viscous motion in a convex corner is determined mainly
by a primarily two-dimensional (secondary) flow past a ‘wedge’ of opening angle
α̃ = (2−n)π (compared to βπ for the classical two-dimensional wedge), where n = 2/s
with 1 6 n 6 2. It follows, therefore, that as n → 1 (i.e. in the semi-infinite flat plate
limit) the flow in the (x∗, y∗)-plane becomes effectively that of a two-dimensional
stagnation point flow which confirms results presented in § 5.2.4 for K → −∞. Fur-
thermore, equations (7.1), (7.2) and (7.4) indicate that in the quarter-infinite flat-plate
limit n → 2, the fluid motion in the (x∗, y∗)-plane would correspond to that past a
semi-infinite flat plate at zero incident. In particular, it can be shown that as X →∞,
with Y ∼ 1 fixed, the crossflow corner-layer solution assumes a Falkner–Skan-like
form, but with a solution existing only for β > 0 for reasons similar to those given in
§ 5.2.4, namely because of the governing equations admitting exponentially decaying
solutions as Y →∞ only when β > 0.

The above result further suggests that, for convex corners, the Stokes solution of
the secondary flow problem is none other than that found by Moffat (1964), and
by Davis, Ghia & Ghia (1974) whose results additionally provide, apart from a
multiplication factor, practically the full corner-layer secondary flow solution.
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7.2. The intermediate layer: region (iii)

7.2.1. Governing equations

In this region, equations (6.1)–(6.4), and the corresponding similarity equations
(6.8)–(6.10), remain valid, of course; but as ξ → 0, conditions imposed on F(0,∞)
and Gη(0,∞) become unbounded. To take this behaviour into account, we seek then
similarity-type solutions by introducing the following new variables

Û = −Z[F(ξ1, η1) + 1
2
s(β − 1)J1ξ1H(ξ1, η1)],

V̂ = −Z[(n− 1)η1F(ξ1, η1) + ξ1G(ξ1, η1) + (β − 1)J1ξ1η1H(ξ1, η1)],

Ŵ = zmH(ξ1, η1), P̂ = − 1
2
z2m + δ2zm−1P (ξ1) + · · ·

 (7.6)

where Z = z(m−1)/2c−2J
−1/2
1 , X = z(1−m)/2ξn1 , Y = z(1−m)/2cJ

1/2
1 η1, J1 = n2ξ

2(n−1)
1 , and

n = 2/s. Inserting these into the boundary-layer equations (6.1)–(6.4) yields

∂2F
∂η1

2
+F∂F

∂ξ1

+ G∂F
∂η1

− n− 1

ξ1

F2 + 1
2
s(β − 1)ξ1J

2
1H2 = Q, (7.7)

∂2H
∂η1

2
+F∂H

∂ξ1

+ G∂H
∂η1

+ βJ1(1−H2) = 0, (7.8)

∂F
∂ξ1

+
∂G
∂η1

− (2− β)J1H = 0, (7.9)

after dropping the overbar; here,

Q =
2β2

s3(s− 1)
ξ1 − β(2− β)

2(s− 1)
ξ1J1 + 1

8
sβ2ξ1J

2
1 .

The boundary conditions are

F = G =H = 0 at η1 = 0,

F→ ξ1

(
1
4
s(2− β)J1 − β

s(s− 1)

)
, H→ 1 as η1 →∞

 (7.10)

together with an initial condition at some 0 6 ξ1 6 1 value by virtue of the parabolic
nature of system (7.7)–(7.9), or with conditions applied at both limits as for (6.8)–
(6.10). This depends on the sign of F appearing in the second term of the first two
equations and linked, in many respects, to the nature of the solution near ξ1 = 0 and
ξ1 = 1. That is why we find it preferable to discuss these issues first in some detail.

7.2.2. Numerics and solution properties as ξ1 → 0 and ξ1 → 1

The solution behaviour as ξ1 → 0 can be deduced by setting

(F,G,H)(ξ1, η1) =

∞∑
k=0

Jk1 (ξ1Fk,Gk,Hk)(η1), (7.11)

subject to conditions readily derivable from (7.10). Inserting expansions (7.11) into
equations (7.7)–(7.9) leads to sets of equations in the leading order of which the
solution (F0,G0) is uncoupled fromH0, with the latter depending on the former. We
find, in particular, that (F0,G0) reduces to the Falkner–Skan solution f(η) (equation
(5.4)) upon writing

F0(η1) = −a2f′(η), G0(η1) = af(η), η = aη1, (7.12)
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with the transverse pressure gradient parameter (2 − n) replacing β in (5.4), where
a =

√
β/s(s− 1); this shows that F < 0 for ξ1 sufficiently small. This result tells us

that matching is assured between regions (i) and (iii), and suggests further that the
boundary-layer flow for ξ1 small becomes mainly controlled by the secondary flow in
the (ξ1, η1)-plane.

Turning now to solution properties in the neighbourhood of ξ1 = 1, we note,
according to the boundary conditions (7.10), that F(1,∞) > 0 for β < (2 − n), in
which case a change of sign of F would be expected to occur at some ξ1 < 1. For
β < (2 − n), this observation together with that made regarding solutions behaviour
for small ξ1, indicates that: (i) F is likely to have a reversed profile within the
domain 0 < ξ1 < 1, and (ii) a marching parabolic numerical scheme started from
ξ1 = 0 (respectively, ξ1 = 1) will most probably fail to reach ξ1 = 1 (respectively,
ξ1 = 0).

In line with these observations, two parabolic marching numerical schemes were
implemented, both analogue to scheme MNS (discussed in § 6.1.2): scheme MNS0

with initial conditions imposed at the inner limit, and scheme MNS1 in which
they were applied at ξ1 = 1. Using both schemes numerous computations were
conducted, in particular for corners of angles 225◦, 270◦ and 315◦. Here, we find it
sufficient to present results for a 270◦ corner, for which distributions of wall shear
stress components J−1/2wη1

(ξ1, η1 = 0)/c and J−1/2uη1
(ξ1, η1 = 0)/c (corresponding,

respectively, to wη(ξ, η = 0)/c and uη(ξ, η = 0)/c) are shown in figure 16; notice
how the streamwise component of the wall shear stress tends to infinitely large
values as ξ1 → 0. When β 6 (2 − n), we have generally found that: (i) scheme
MNS0 broke down at ξ1 < ξs, (ii) scheme MNS1 broke down at ξ1 > ξs with
F exhibiting a reversed-flow-like profile, and (iii) solutions obtained using scheme
MNS0 (respectively, MNS1) were characterized by high-frequency oscillations as
ξ1 ↗ ξs (respectively, as ξ1 ↘ ξs), where ξs is defined byFη1

(ξs, 0) = 0. In addition to
these properties, our numerical results indicate that the breakdown of scheme MNS0

occurs in a singular fashion, with Fη1
(ξ1, 0) ∝ (ξs − ξ1)

1/2 immediately ahead of ξs.
This suggests that a Goldstein (1948) type singularity takes place in this vicinity, as
is usually encountered in calculations of separating fully two-dimensional boundary
layers with prescribed adverse (positive) pressure gradient. Under such conditions,
computations in the neighbourhood of ξs are not possible or appropriate, and must
therefore be conducted within the framework of interactive boundary-layer theory
(Neiland 1969; Stewartson & Williams 1969; Sychev et al. 1998). This is consistent
with oscillations characterizing the solutions in the neighbourhood of ξs, which
appear to mirror the dependence of solutions on downstream conditions that remain
unsatisfied by both marching schemes. Furthermore, our unsuccessful attempts to
overcome these difficulties by implementing approaches, using conditions near ξ1 = 0
and at ξ1 = 1 simultaneously, such as DNS-type or TVD schemes (see § 6.1.2), seem
to confirm the existence of a Goldstein type singularity.

In an attempt to gain a deeper insight into these difficulties, we have also assumed
that the sought solution may have eigensolutions in the form

(F,G,H)(ξ1, η1) = (Fb(η1),Gb(η1),Hb(η1)) + ξnλ1 (ξ1Fλ(η1),Gλ(η1),Hλ(η1)) + · · · ,
(7.13)

as suggested by expansions (7.11). Here, the basic state solution is denoted by
the subscript b, with λ being an arbitrary complex constant. We have found that
the perturbation equations for (Fλ,Gλ) are uncoupled from that of Hλ, with the
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Figure 16. 270◦-convex corner, region (iii): wall shear stress (a) J−1/2wη1
(ξ1, η1 = 0)/c and

(b) J−1/2uη1
(ξ1, η1 = 0)/c distributions, β as indicated.

latter depending on the former; the boundary conditions are Fλ(0) = G′λ(0) =
Hλ(0) = Fλ(∞) = Hλ(∞) = 0. For simplicity, we took Fb = F0,Gb = G0 and
Hb = H0, leading to an eigenvalue problem the numerical solution of which is
independent of β, and can surprisingly be expressed (for the smallest eigenvalue) by
Re{λ1} = 1.957 31(1− s)− s < 0, since 1 6 s < 2. Note that this result recovers that of
Libby & Fox (1963) for the Blasius solution, presently obtained in the quarter-infinite
flat plate limit n = 2/s = 2, and, when projected in the physical space, specifically tells
us that all velocity components of the perturbation become unbounded as x→ 0. In
some sense, this is consistent with the corresponding result for concave corners and
sheds further light on instability problems akin to boundary-layer flows along corners
and sharp edges.

7.2.3. Results and further discussions

Here, attention will be focused mainly on the 270◦ (n = 1.5) corner situation for
which a selection of solution profiles for the crossflow velocity component u(ξ, η)
is shown in figure 17(a). From these results, and those depicted in figure 16(b) for
the x-component of the wall shear stress, we see that u(ξ, η) exhibits a reversed flow
profile for values of β satisfying β . (2 − n) = 0.5 which is in line with previous
discussions, and consequently mirrors the generation of a closed streamwise vortex
structure as illustrated in figure 17(b), the vortex being rotated now in the opposite
sense to that generated in concave corners. This result extends therefore the prediction
made by Moore (1956) to convex corners. Another observation that deserves mention
here concerns the boundary-layer thickness. This is found (when n < 2) to be fairly
constant for β small, but becomes rapidly thinner in the inner limit of region (iii)
with increasing β.

Lastly, previous discussions, together with inspection of results furnished by our
numerous computations, seemingly suggest that the ‘condition’ β ∼ (2− n) reflects a
kind of equilibrium state between the streamwise and transverse pressure forces that
manifests itself through the ratio m/(s− 1) appearing in the Vx velocity component,
equation (2.25), which, if m remains finite, becomes singular in the quarter-infinite
flat-plate limit n→ 2 (s→ 1). This question is considered next.
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8. The quarter-infinite flat plate limit s→ 1

The question of singularity arising when s→ 1, with m 6= 0, can be resolved readily,
if the condition β 6 (2− n) is satisfied, by letting the wedge opening angle αw → 0 at
this limit (implying m→ 0 simultaneously). Hence, we set

lim
s→1

m→ s− 1→ α̃

2π
, α̃� 1, (8.1)

in which α̃ = (2 − n)π denotes the external corner angle. Note that this limiting
process is exactly equivalent to setting limn→2 β → (2−n) which highlights further the
physical significance of the situation previously defined by β ∼ (2−n). Now, as for an
almost-planar corner, it can be shown in the present case that flow features pertaining

to boundary-layer flow along a convex corner may arise when α̃ = O(1/ ln(δ/δ̂)) or

greater. However, since δ̂ � Re−1/2 (as s→ 1) we can then set δ̂ ∼ Re−1/N, 0 < N < 2,
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Figure 17. 270◦-convex corner, region (iii): (a) u(ξ, η) profiles, β and ξ as indicated; (b) constant
streamwise vorticity ω(ξ1, η1) contours.

and hence we may write

α̃ =
K

lnRe
, K ∼ 1 (8.2)

before considering boundary layers in the different zones. Accordingly, the boundary-
layer solution may be sought in the form

(Û, V̂ , Ŵ ) = (U0, V0, V0) +
K

lnRe
(U1, V1,W1) + · · · (8.3)

where (U0, V0,W0) and (U1, V1,W1) are functions of (X,Y , z). In region (i) the
boundary-layer equations are of course (7.1)–(7.4) where, apart from a multipli-
cation factor, the solution (U0, V0) is practically that given by Davis et al. (1974) for
the two-dimensional flow near the leading edge of a semi-infinite flat plate at zero-
incidence. At the side-edge of region (i), that is for X large and Y ∼ 1 fixed, both
velocity components in the x- and z-directions can be shown to have a Blasius-type
solution profile to the leading order of approximation.

For convenience, we consider now the outer boundary layer, region (ii), for which
the potential flow condition imposed on the x-direction velocity component vx leads to

Û ∼ O(δε−1
x ) + O(δε−1

x /lnRe) (8.4)

as Y →∞. According to Stewartson (1961), changes produced by the boundary-layer
displacement effect on vx with (x/z) small (but still sufficiently ‘far’ from the side-edge
of the plate) are characterized by εx = O(Re−1/2) and may subsequently be neglected
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here compared to O(δ). Hence, we find, in conformity with problem (4.1)–(4.8), that
Ŵ = f′(η) and

Û = 1
2
z−1/2f′′(η)

∫ η

0

τ− σ
f′′(τ)

dτ, σ = lim
η→∞ (f − η), (8.5)

to the leading order of approximations. This, apart from the order of magnitude
of the x-direction velocity component, represents precisely the leading-term solution
obtained by Stewartson for the viscous flow past a quarter-infinite flat plate for (x/z)
small. He also finds that εx = O(lnRe/Re1/2) somewhere in a region nearer to the
side-edge of the plate with (x/z) being always small, but where εx = O(δx) (in our
notations). Then, in order to have a meaningful comparison with his work we set
δ = O(lnRe/Re1/2), and so the said region (of Stewartson) now becomes equivalent to
region (iii); this estimation appears to be plausible and agrees with 1� δ � Re−1/2,

leading to a corner layer of thickness δ̂ ∼ O(1/Re1/2 lnRe).
This brings us to the boundary layer in region (iii). Here, the governing equa-

tions are (6.1)–(6.4) for which the similarity solution can now be obtained from
(7.6)–(7.10) with m = β = 0 save for β/(s− 1) which, according to (8.1) and the
definition of β, is set equal to 2. Likewise, the flow properties for ξ1 � 1 are now
determined according to expansions (7.11); these provide boundary conditions at
some small ξ1. The boundary conditions at ξ1 = 1, on the other hand, are furnished
by g and f given in (4.6) and (4.7). These show that F < 0 in this vicinity, which
implies that schemes such as MNS1 are ill-posed for integrating equations (7.7)–(7.8)
starting from ξ1 = 1. Integration in the sense of scheme MNS0, however, remains
possible. Again, a breakdown in the numerical solution takes place in a singu-
lar fashion, as illustrated in figure 18 where distributions for wη1

(ξ1, η1 = 0)/c and
uη1

(ξ1, η1 = 0)/c are shown. We have found from our numerical computations that
Fη1

(ξ1, 0) ∝ (ξs − ξ1)
1/2 immediately ahead of ξs, which tells us that the breakdown

is engendered once again by a Goldstein type singularity. For completeness, profiles
for wη1

(ξ1, η1 = 0)/c and uη1
(ξ1, η1 = 0)/c are also presented in figure 19 for the

near limit 359.9 ◦ ‘corner’ configuration. These results highlight further the evolu-
tion of the singularity with varying β. Observe how results for the case β0 = s − 1
(with s = 359.9/360) effectively reproduce those of the limit s → 1. Observe also
that both components of the wall shear stress tend now to infinitely large values as
ξ1 → 0.

To illustrate the crossflow evolution in region (iii), a selection of profiles for
u(ξ1, η1) is shown in figure 20 for s = 359.9/360 and s→ 1. Here, we see that
the crossflow evolves from a Blasius-like profile at ξ1 = 0 to a massively reversed
flow profile at ξ1 = 1. Obviously, this behaviour is tantamount to the formation
of a closed streamwise vortex in both cases, and is coupled to a rapid growth in
the boundary-layer thickness within the intermediate layer. Note also the excellent
agreement between the asymptotic solution for the case s→ 1, computed according
to (7.11), and the numerical solution for ξ1 . 0.3675 (see also figure 20 in this
regard).

The overall picture emerging from results presented so far, clearly suggests that
the flow past a quarter-infinite flat plate is but a regular limit of flows along convex
corners, and qualitatively exhibits, on the whole, similar flow characteristics related
to the crossflow–vortex structure and eigensolutions emanating from x = 0. In this
context, it can be said that comments regarding corner flow instability are generally
valid for concave and convex corners alike, including the quarter-infinite flat-plate
limit.
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9. Conclusions and further discussions
In this paper, we have investigated both inviscid and viscous incompressible steady

laminar flows along streamwise corners. The formulation is new, quite general, and
is applicable to concave and convex corners of arbitrary angles (π − 2α), including
the semi- and quarter-infinite flat-plate limits. Our analysis has unfolded into an
inviscid flow problem of the singular perturbation type, leading to an essentially
four-region treatment (see figure 2) for the potential flow instead of the one-region
traditional approach used by Rubin (1966) for the zero streamwise pressure gradi-
ent case (and followed later by other authors: Desai & Mangler 1974; Barclay &
Ridha 1980; Wilkinnson & Zamir 1984; Ridha 1990; Dhanak & Duck 1997; amongst
others), or the two-region treatment (Smith 1975) employed for the three-dimensional
stagnation point flow into a corner. This has necessarily led to a viscous motion
characterized by a five-region-structure (depicted in figure 3), compared with the
three-region representation hitherto used in previous works: the corner layer (region
(i)) is now separated from the far-field boundary layers (regions (ii)) by an interme-
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diate layer (region (iii)), on each of its sides, characterized by spanwise length and
velocity scales of O(δ), where Re−1/2 � δ � 1, with possibly δ ∼ O(Re−1/2 lnRe), as
suggested by comparison with the work of Stewartson (1961) on boundary-layer flow
past a quarter-infinite flat plate. A major consequence of this structure is a corner-
layer motion in convex corners mainly determined by the secondary flow in the
(x∗, y∗)-plane, and effectively equivalent to the two-dimensional viscous motion past a
wedge, but with similarity solutions being unique and existing only for a favourable
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streamwise pressure gradient. Our analysis has further shown that the evolution from
this secondary-flow-dominated corner-layer motion into a primary-flow-dominated
boundary layer takes place within an extremely short spanwise distance ∆x, charac-
terized by O(Re−0.5+α/πδ2α/π) < ∆x < O(δ), with − 1

2
π 6 α < 0. For this flow state,

the shear stress tends to infinitely large values on approaching the corner-line, lead-
ing to infinite streamwise and sideways (particularly as s → 1) forces in the strip
0 < x < δ, z > 0.

Perhaps the most important result of the present work is that lying in the unravelling
of crossflow–vortex structures, previously predicted by Moore (1956) (specifically in
the corner layer, but found herein in the intermediate layers), proceeding from the
forward corner, for both concave and convex corner flows, including the semi-
and quarter-infinite flat plate limiting flow states. These structures give a crucial
insight into the nature of corner flows and raise further questions, most worthy of
investigating, on their instability, for streamwise vortices in a boundary layer are
well known to influence strongly the behaviour of other disturbances (Reed & Saric
1989).

For almost planar corners, the similarity solution for the corner-layer has been
found to be non-unique and exhibiting a crossflow with a jetlike or reversed flow
profile, depending on the flow state. Similarity equations for the intermediate layer
(for the general corner flow problem), on the other hand, possess spanwise alge-
braically growing eigensolutions, possibly emanating from the corner line; these
are believed to be at the origin of many computational difficulties in the numer-
ical task, particularly in obtaining lower branch solutions for concave corners, a
problem that we have left unsolved. These difficulties have, for a convex corner,
been further compounded by the presence of a Goldstein (1948) type singularity
which was partially overcome by using two parabolic implicit marching, second-
order finite-difference schemes initiated upstream and downstream of the singularity
point.

Crucially, it is only when the said eigensolutions are considered from the viewpoint
of independent-Reynolds-number algebraically growing instability (Luchini 1996),
that their significance can, perhaps, be best appreciated. In particular, there exist
interesting parallels between the spanwise-eigenmodes found by Luchini (1996, 2000),
and Anderson, Berggren & Henningson (1999), or between the streamwise-eigenmodes
found by Duck et al. (1999, 2000) and Duck & Dry (2001), which both algebraically
grow in the streamwise direction, and ours. In our results, the eigensolutions are
effectively in the spanwise direction; they start becoming dangerous (in the interme-
diate layer) under sufficiently small pressure gradients conditions (for both solution
branches), and grow unboundedly (for the lower solution branch) as x → 0, that
is in the inner limit of the intermediate layer which is precisely the outer limit of
the corner-layer. Such perturbations naturally lead us to the link between ‘bypass
transition’ and disturbances in algebraic growth suggested by Luchini (1996), which,
together with flow instability related to crossflow–vortex structures (Reed & Saric
1989), does seem to be consistent with difficulties reported by Zamir (1981) (see
also Zamir & Young 1970, 1979; Barclay 1973) in obtaining a stable corner-layer in
laminar form for zero streamwise pressure gradient conditions at a large Reynolds
number.

This paper offers, therefore, further explanations (besides those advanced by Ridha
1992; Dhanak & Duck 1997; Duck et al. 1999; Parker & Balachandar 1999) for the
experimental difficulties, and strongly suggests investigating corner flow instability in
the intermediate layer proper, region (iii).
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Ridha, A. 1995 L’écoulement potentiel tridimensionnel le long d’un coin revisité. C. R. Acad. Sci.
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